Explainable machine learning (ML) has gained traction in recent years due to the increasing adoption of ML-based systems in many sectors. Counterfactual explanations (CFEs) provide ``what if'' feedback of the form ``if an input datapoint were $x'$ instead of $x$, then an ML-based system's output would be $y'$ instead of $y$.'' CFEs are attractive due to their actionable feedback, amenability to existing legal frameworks, and fidelity to the underlying ML model. Yet, current CFE approaches are single shot -- that is, they assume $x$ can change to $x'$ in a single time period. We propose a novel stochastic-control-based approach that generates sequential CFEs, that is, CFEs that allow $x$ to move stochastically and sequentially across intermediate states to a final state $x'$. Our approach is model agnostic and black box. Furthermore, calculation of CFEs is amortized such that once trained, it applies to multiple datapoints without the need for re-optimization. In addition to these primary characteristics, our approach admits optional desiderata such as adherence to the data manifold, respect for causal relations, and sparsity -- identified by past research as desirable properties of CFEs. We evaluate our approach using three real-world datasets and show successful generation of sequential CFEs that respect other counterfactual desiderata.
翻译:近几年来,由于在许多部门越来越多地采用基于ML的系统,可解释的机器学习(ML)获得了吸引力。反事实解释(CFES)提供了“如果对表格的反馈“如果输入数据点是美元而不是美元,那么基于ML的系统产出将是美元而不是美元。”CFES由于其可操作的反馈、对现有法律框架的可接受性和对ML基本模式的忠诚性而具有吸引力。然而,目前的CFES方法是一次性的,也就是说,它们假定美元可以在同一时间段内改变为$x美元。我们建议采用一种新的基于“如果输入数据点是美元而不是美元”的反馈,那么基于输入数据点的系统产出将是美元而不是美元。“CFES”由于它们的可操作性反馈、对现有法律框架的兼容性和对MLFL模式的忠诚性而具有吸引力。此外,CFES的计算方法是一次性的计算,一旦经过培训,就假定美元xx美元可以转换成$x$x美元。我们建议采用新的方法,对于多份的直线-基于直线-直线-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-