Deep Learning and factorization-based collaborative filtering recommendation models have undoubtedly dominated the scene of recommender systems in recent years. However, despite their outstanding performance, these methods require a training time proportional to the size of the embeddings and it further increases when also side information is considered for the computation of the recommendation list. In fact, in these cases we have that with a large number of high-quality features, the resulting models are more complex and difficult to train. This paper addresses this problem by presenting KGFlex: a sparse factorization approach that grants an even greater degree of expressiveness. To achieve this result, KGFlex analyzes the historical data to understand the dimensions the user decisions depend on (e.g., movie direction, musical genre, nationality of book writer). KGFlex represents each item feature as an embedding and it models user-item interactions as a factorized entropy-driven combination of the item attributes relevant to the user. KGFlex facilitates the training process by letting users update only those relevant features on which they base their decisions. In other words, the user-item prediction is mediated by the user's personal view that considers only relevant features. An extensive experimental evaluation shows the approach's effectiveness, considering the recommendation results' accuracy, diversity, and induced bias. The public implementation of KGFlex is available at https://split.to/kgflex.


翻译:深层次的学习和基于因素的协作过滤建议模式近年来无疑在推荐者系统中占据了主导位置,然而,尽管这些方法表现出色,但是,这些方法要求培训时间与嵌入系统的规模成比例,在计算建议列表时也考虑侧面信息时,这些方法还会进一步增加。事实上,在这些情况下,我们拥有大量高质量特征,由此产生的模型就更加复杂和难以培训。本文件通过介绍KGFlex来解决这一问题:一种稀疏的因子化方法,能够提供更大程度的表达性。为了实现这一结果,KGFlex分析历史数据,以了解用户决定所依赖的层面(例如电影方向、音乐风格、书写者的国籍)。 KGFelex将每个项目都作为嵌入并模拟用户-项目互动,作为与用户相关的因素的诱导的诱变组合。KGFlex只让用户更新其决定所依据的相关特征,从而便利培训进程。换句话说,用户对用户的用户项目预测由用户个人观点进行调解,以了解用户决定所依赖的层面(例如电影方向、音乐风格、书写手的国籍) 。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【综述笔记】Graph Neural Networks in Recommender Systems
图与推荐
5+阅读 · 2020年12月8日
最新图学习推荐系统综述 | Graph Learning Approaches to Recommender Systems
机器学习与推荐算法
5+阅读 · 2020年4月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
LibRec 精选:近期15篇推荐系统论文
LibRec智能推荐
5+阅读 · 2019年3月5日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Arxiv
92+阅读 · 2020年2月28日
VIP会员
相关资讯
【综述笔记】Graph Neural Networks in Recommender Systems
图与推荐
5+阅读 · 2020年12月8日
最新图学习推荐系统综述 | Graph Learning Approaches to Recommender Systems
机器学习与推荐算法
5+阅读 · 2020年4月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
LibRec 精选:近期15篇推荐系统论文
LibRec智能推荐
5+阅读 · 2019年3月5日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Top
微信扫码咨询专知VIP会员