Approach and landing accidents have resulted in a significant number of hull losses worldwide. Technologies (e.g., instrument landing system) and procedures (e.g., stabilized approach criteria) have been developed to reduce the risks. In this paper, we propose a data-driven method to learn and interpret flight's approach and landing parameters to facilitate comprehensible and actionable insights into flight dynamics. Specifically, we develop two variants of tunnel Gaussian process (TGP) models to elucidate aircraft's approach and landing dynamics using advanced surface movement guidance and control system (A-SMGCS) data, which then indicates the stability of flight. TGP hybridizes the strengths of sparse variational Gaussian process and polar Gaussian process to learn from a large amount of data in cylindrical coordinates. We examine TGP qualitatively and quantitatively by synthesizing three complex trajectory datasets and compared TGP against existing methods on trajectory learning. Empirically, TGP demonstrates superior modeling performance. When applied to operational A-SMGCS data, TGP provides the generative probabilistic description of landing dynamics and interpretable tunnel views of approach and landing parameters. These probabilistic tunnel models can facilitate the analysis of procedure adherence and augment existing aircrew and air traffic controllers' displays during the approach and landing procedures, enabling necessary corrective actions.


翻译:在本文件中,我们提出了一种数据驱动方法,用于学习和解释飞行方法和着陆参数,以便利对飞行动态的可理解和可操作的洞察力;具体地说,我们开发了两种隧道高山过程模型,利用先进的地表移动指导和控制系统(A-SMGCS)数据来说明飞机的方法和着陆动态,然后显示飞行的稳定性;TGP将稀有的变异高山进程和极地高山进程的优势结合起来,以便从圆柱形坐标的大量数据中学习;我们通过对三个复杂的轨迹数据集进行同步化,并与现有轨迹学习方法进行比较,从质量和数量上审查TGP(TGP)模型,以阐明飞机的方法和着陆动态;TGP在应用A-SMGCS(A-S-SMGCS)数据时,展示了优异型模型;TGP在应用操作A-SMS数据时,提供了对着陆动态和极地高地标进程的精度精确性描述,并在现有着陆和可解释的航空稳定性导航分析过程中,这些对着陆和稳定性压式飞行方法进行了精度分析。

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
【干货书】机器学习速查手册,135页pdf
专知会员服务
124+阅读 · 2020年11月20日
【新书】贝叶斯网络进展与新应用,附全书下载
专知会员服务
118+阅读 · 2019年12月9日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
149+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
人工智能 | 国际会议信息6条
Call4Papers
4+阅读 · 2019年1月4日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
人工智能 | AAAI 2019等国际会议信息7条
Call4Papers
5+阅读 · 2018年9月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Arxiv
6+阅读 · 2021年6月24日
Arxiv
11+阅读 · 2021年3月25日
Arxiv
14+阅读 · 2020年12月17日
Interpretable Active Learning
Arxiv
3+阅读 · 2018年6月24日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
人工智能 | 国际会议信息6条
Call4Papers
4+阅读 · 2019年1月4日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
人工智能 | AAAI 2019等国际会议信息7条
Call4Papers
5+阅读 · 2018年9月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Top
微信扫码咨询专知VIP会员