Specialized motions such as jumping are often achieved on quadruped robots by solving a trajectory optimization problem once and executing the trajectory using a tracking controller. This approach is in parallel with Model Predictive Control (MPC) strategies that commonly control regular gaits via online re-planning. In this work, we present a nonlinear MPC (NMPC) technique that unlocks on-the-fly re-planning of specialized motion skills and regular locomotion within a unified framework. The NMPC reasons about a hybrid kinodynamic model, and is solved using a variant of a constrained Differential Dynamic Programming (DDP) solver. The proposed NMPC enables the robot to perform a variety of agile skills like jumping, bounding, and trotting, and the rapid transition between these skills. We evaluated the proposed algorithm with three challenging motion sequences that combine multiple agile skills, on two quadruped platforms, Unitree A1, and MIT Mini Cheetah, showing its effectiveness and generality.
翻译:跳跃等特殊动作往往通过一次解决轨道优化问题并使用跟踪控制器执行轨迹,在四重机器人身上实现。 这一方法与通常通过在线再规划控制常规音频的模型预测控制(MPC)战略平行。 在这项工作中,我们提出了一个非线性MPC(NMPC)技术,在统一的框架内解开专门运动技能的实时再规划以及常规移动。 NMPC关于混合运动动力模型的原因,并使用一个受限制的不同动态程序(DDP)解答器(DDP)解析器来解决。 拟议的NMPC使机器人能够运用各种灵活技能,如跳跃、捆绑和旋转,以及这些技能之间的快速转变。我们用三个具有挑战性的动作序列评估了拟议的算法,其中结合了在两个四重平台上的多重灵活技能,即Unitee A1和MIT Mini Chetah,显示了其有效性和一般性。