With the increasing prevalence of artificial intelligence (AI) in diverse science/engineering communities, AI models emerge on an unprecedented scale among various domains. However, given the complexity and diversity of the software and hardware environments, reusing AI artifacts (models and datasets) is extremely challenging, especially with AI-driven science applications. Building an ecosystem to run and reuse AI applications/datasets at scale efficiently becomes increasingly essential for diverse science and engineering and high-performance computing (HPC) communities. In this paper, we innovate over an HPC-AI ecosystem -- HPCFair, which enables the Findable, Accessible, Interoperable, and Reproducible (FAIR) principles. HPCFair enables the collection of AI models/datasets allowing users to download/upload AI artifacts with authentications. Most importantly, our proposed framework provides user-friendly APIs for users to easily run inference jobs and customize AI artifacts to their tasks as needed. Our results show that, with HPCFair API, users irrespective of technical expertise in AI, can easily leverage AI artifacts to their tasks with minimal effort.
翻译:随着人工智能(AI)在不同科学/工程界的日益普及,人工智能模式在不同领域出现了前所未有的规模,然而,鉴于软件和硬件环境的复杂性和多样性,重新使用人工智能工艺品(模型和数据集)极具挑战性,特别是由人工智能驱动的科学应用。建立一个能够高效运行和再利用人工智能应用/数据集的生态系统,对于多样化科学和工程界以及高性能计算界越来越重要。在本文件中,我们创新了高常PC-人工智能生态系统 -- -- HPCFair,它使得可查找、可获取、可互操作和可复制(FAIR)原则得以实现。HPCFair使得收集人工智能模型/数据集使用户能够下载/加载经认证的人工智能工艺品。最重要的是,我们提出的框架为用户提供了方便用户的人工智能信息信息,以便轻松地运行工作,并根据需要定制人工智能工艺品。我们的结果表明,随着HPCFair API用户,无论在AI中拥有何种技术专长,都能够轻松地将人工智能工艺品用于他们的任务。