Exponential random graph models, or ERGMs, are a flexible class of models for networks. Recent work highlights difficulties related to the models' ill behavior, dubbed `degeneracy', such as most of the probability mass being concentrated on a very small subset of the parameter space. This behavior limits both the applicability of an ERGM as a model for real data and parameter estimation via the usual MCMC algorithms. To address this problem, we propose a new exponential family of models for random graphs that build on the standard ERGM framework. We resolve the degenerate model behavior by an interpretable support restriction. Namely, we introduce a new parameter based on the graph-theoretic notion of degeneracy, a measure of sparsity whose value is low in real-worlds networks. We prove this support restriction does not eliminate too many graphs from the support of an ERGM, and we also prove that degeneracy of a model is captured precisely by stability of its sufficient statistics. We show examples of ERGMs that are degenerate whose counterpart DERGMs are not, both theoretically and by simulations, and we test our model class on a set of real world networks.
翻译:光源随机图形模型或ERGM是网络的灵活模型类别。 最近的工作凸显了与模型的不良行为有关的困难,称为“退化性”,例如大部分概率质量集中在参数空间的一个非常小的子集上。这种行为限制了ERGM作为真实数据模型和参数估计模型的适用性,通过常规的 MCM 算法来解决这个问题。为了解决这个问题,我们提议在标准的ERGM 框架的基础上,为随机图建立一个新的指数系列模型。我们通过可解释的支持限制来解决退化模型的行为。也就是说,我们引入了一个新的参数,该参数基于变异性的图形理论概念,即现实世界网络中价值低的宽度测量。我们证明这种支持性限制并不消除ERGM支持中太多的图表,我们还证明一个模型的变异性精确地被其足够统计数据的稳定性所捕捉。我们展示了ERGM的示例,其对应的DERGMGM并不是真实的理论和模拟世界模型集。