Our main results are quantitative bounds in the multivariate normal approximation of centred subgraph counts in random graphs generated by a general graphon and independent vertex labels. We are interested in these statistics because they are key to understanding fluctuations of regular subgraph counts --- a cornerstone of dense graph limit theory. We also identify the resulting limiting Gaussian stochastic measures by means of the theory of generalised $U$-statistics and Gaussian Hilbert spaces, which we think is a suitable framework to describe and understand higher-order fluctuations in dense random graph models. With this article, we believe we answer the question "What is the central limit theorem of dense graph limit theory?". We complement the theory with some statistical applications to illustrate the use of centred subgraph counts in network modelling.
翻译:我们的主要结果是一个普通的平面图和独立的顶点标签产生的随机图表中中心子计数的多变常态普通近似值的量化界限。 我们对这些统计感兴趣, 因为它们是理解常规子计数波动的关键 -- -- 这是密度图形限制理论的基石。 我们还通过通用的美元统计学理论和高西亚希尔伯特空间, 确定了由此产生的限制高斯随机测量测量测量的参数, 我们认为这些参数是描述和理解稠密随机图模型中较高水平波动的合适框架。 我们相信, 我们用这篇文章回答一个问题 : “ 密度图形限制理论的中心界限是什么? ” 我们用一些统计应用来补充该理论, 以说明网络建模中使用中心子计数的情况。