An important question in statistical network analysis is how to construct and estimate models of dependent network data without sacrificing computational scalability and statistical guarantees. We demonstrate that scalable estimation of random graph models with dependent edges is possible, by establishing the first consistency results and convergence rates for pseudo-likelihood-based $M$-estimators for parameter vectors of increasing dimension based on a single observation of dependent random variables. The main results cover models of dependent random variables with countable sample spaces, and may be of independent interest. To showcase consistency results and convergence rates, we introduce a novel class of generalized $\beta$-models with dependent edges and parameter vectors of increasing dimension.We establish consistency results and convergence rates for pseudo-likelihood-based $M$-estimators of generalized $\beta$-models with dependent edges, in dense- and sparse-graph settings.
翻译:统计网络分析的一个重要问题是,如何构建和估算依赖网络数据的模型,而不损害计算尺度和统计保障。我们证明,对具有依赖边缘的随机图表模型进行可缩放的估计是可能的,办法是根据对依赖随机变量的单一观察,为以伪相似值为基础的日益增强的参数矢量确定第一批一致性结果和趋同率。主要结果包括具有可计算样本空间的依赖随机变量模型,可能具有独立兴趣。为了展示一致性结果和趋同率,我们引入了一种具有依赖边缘和参数矢量日益增大的通用的$\Beta美元模型。我们为具有依赖边缘、密集和分散环境的通用美元/Beta美元模型确定一致性结果和趋同率。