Conditional Variance Estimation (CVE) is a novel sufficient dimension reduction (SDR) method for additive error regressions with continuous predictors and link function. It operates under the assumption that the predictors can be replaced by a lower dimensional projection without loss of information. In contrast to the majority of moment based sufficient dimension reduction methods, Conditional Variance Estimation is fully data driven, does not require the restrictive linearity and constant variance conditions, and is not based on inverse regression. CVE is shown to be consistent and its objective function to be uniformly convergent. CVE outperforms the mean average variance estimation, (MAVE), its main competitor, in several simulation settings, remains on par under others, while it always outperforms the usual inverse regression based linear SDR methods, such as Sliced Inverse Regression.
翻译:有条件差异估计(CVE)是使用连续预测器和链接功能进行叠加错误回归的新的足够维度减少法(SDR),其操作假设是,预测器可以由低维投影取代而不会丢失信息。与大多数基于时刻的足够维度减少法相比,有条件差异估计完全由数据驱动,不要求限制性的线性与不变差异条件,也不以反向回归为基础。CVE被证明是一致的,其目标功能是一致的。CVE优于平均差异估计平均数,(MAVE),其主要竞争者在若干模拟环境中处于相同状态,但总是优于通常的反向回归线性梯度方法,如分向反向反向反向反向反向反向回归法。