项目名称: 强自旋-轨道耦合的超导电性及其机理研究

项目编号: No.11474080

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 数理科学和化学

项目作者: 许晓峰

作者单位: 常熟理工学院

项目金额: 85万元

中文摘要: 不断被发现的基于4d、5d电子超导材料,由于其强烈的自旋-轨道耦合,表现出许多新奇的特性,其超导机理很难用传统的BCS理论来解释。揭示超导电子配对对称性是正确理解其超导微观机理不可或缺的要素。因此,本项目计划以新型基于4d、5d电子超导体Nb2PdS5, PbTaSe2,SrPtAs等为研究对象,利用多种实验手段对如下几个重要的科学问题展开系统而深入的研究:(1) 通过化学掺杂方法,研究超导转变温度随不同元素掺杂变化关系,从而研究自旋-轨道耦合强度对其超导的影响。(2) 通过低温比热等测量,研究其低能准粒子激发,探索其超导能隙对称性。(3) 通过电输运、热输运等测量,探索其中可能的由于自旋-轨道耦合引起的奇异配对对称性,如spin triplet配对,从而为揭示其超导微观机制提供实验支持。

中文关键词: 自旋轨道耦合;超导体;配对对称性;输运性质

英文摘要: In recent years, a host of new superconductors based on 4d or 5d electron systems have been discovered. In these systems, spin-orbit coupling may play a significant role and the pairing mechanism may go beyond the conventional Bardeen-Cooper-Schrieffer (BCS) scheme. Revealing the pairing symmetry proves to be a necessary ingredient in our understanding of their pairing mechanism. In this proposal, we aim to study the superconducting properties and the pairing symmetry of such new superconductors (including the very recently-discovered Nb2PdS5, PbTaSe2, SrPtAs and their related) by various experimental tools. Special emphasis will be placed on understanding the role of spin-orbit coupling on the superconductivity. Our proposal is dedicated to addressing the following important issues: (1) By using the chemical substitution, map out the evolution of superconducting transition temperature Tc with different masses of atomic substituent, and therefore clarify the interplay between spin-orbit coupling and superconductivity. (2) Via the low temperature specific heat measurements, explore the behavior of their low-lying quasi-particle excitations and hence determine the superconducting gap structure. (3) Study their low temperature (electrical and thermal) transport properties and look for the signature of proposed novel pairing mechanism, such as spin triplet pairing, due to strong spin-orbit coupling.

英文关键词: spin-orbit coupling;superconductor;pairing symmetry;transport

成为VIP会员查看完整内容
0

相关内容

【AAAI2022】知识图谱表示模型是如何进行外推的?
专知会员服务
22+阅读 · 2022年2月2日
【哈佛大学】深度学习理论实证探究
专知会员服务
42+阅读 · 2021年11月1日
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
16+阅读 · 2021年10月23日
专知会员服务
51+阅读 · 2021年10月16日
专知会员服务
30+阅读 · 2021年10月12日
专知会员服务
104+阅读 · 2021年8月23日
专知会员服务
65+阅读 · 2021年7月4日
【经典书】数理统计学,142页pdf
专知会员服务
96+阅读 · 2021年3月25日
专知会员服务
144+阅读 · 2021年2月3日
积分梯度:一种归因分析方法
极市平台
1+阅读 · 2022年3月17日
中国高校最强超算!上算引力波,下算光量子
量子位
0+阅读 · 2021年12月15日
一文了解成分句法分析
人工智能头条
15+阅读 · 2019年4月24日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
A Sheaf-Theoretic Construction of Shape Space
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
20+阅读 · 2021年9月21日
小贴士
相关VIP内容
【AAAI2022】知识图谱表示模型是如何进行外推的?
专知会员服务
22+阅读 · 2022年2月2日
【哈佛大学】深度学习理论实证探究
专知会员服务
42+阅读 · 2021年11月1日
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
16+阅读 · 2021年10月23日
专知会员服务
51+阅读 · 2021年10月16日
专知会员服务
30+阅读 · 2021年10月12日
专知会员服务
104+阅读 · 2021年8月23日
专知会员服务
65+阅读 · 2021年7月4日
【经典书】数理统计学,142页pdf
专知会员服务
96+阅读 · 2021年3月25日
专知会员服务
144+阅读 · 2021年2月3日
相关资讯
积分梯度:一种归因分析方法
极市平台
1+阅读 · 2022年3月17日
中国高校最强超算!上算引力波,下算光量子
量子位
0+阅读 · 2021年12月15日
一文了解成分句法分析
人工智能头条
15+阅读 · 2019年4月24日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员