We consider the problem of jointly testing multiple hypotheses and estimating a random parameter of the underlying distribution. This problem is investigated in a sequential setup under mild assumptions on the underlying random process. The optimal method minimizes the expected number of samples while ensuring that the average detection/estimation errors do not exceed a certain level. After converting the constrained problem to an unconstrained one, we characterize the general solution by a non-linear Bellman equation, which is parametrized by a set of cost coefficients. A strong connection between the derivatives of the cost function with respect to the coefficients and the detection/estimation errors of the sequential procedure is derived. Based on this fundamental property, we further show that for suitably chosen cost coefficients the solutions of the constrained and the unconstrained problem coincide. We present two approaches to finding the optimal coefficients. For the first approach, the final optimization problem is converted into a linear program, whereas the second approach solves it with a projected gradient ascent. To illustrate the theoretical results, we consider two problems for which the optimal schemes are designed numerically. Using Monte Carlo simulations, it is validated that the numerical results agree with the theory.


翻译:我们考虑的是共同测试多种假设和估计基本分布的随机参数的问题。这个问题是在对基本随机过程的轻度假设下,在顺序设置中调查的。最佳方法最大限度地减少了预期的样本数量,同时确保平均检测/估计错误不超过某一水平。在将受限制的问题转换成不受限制的问题之后,我们用非线性贝尔曼方程式来描述一般解决办法,该方程式以一套成本系数进行对称。在系数的成本函数衍生物和测算/估计顺序程序错误之间有着密切的联系。基于这一基本属性,我们进一步表明,对于选择得当的成本系数,受限制和不受限制的问题的解决办法是相同的。我们提出了两种办法来寻找最佳系数。对于第一种办法,最后优化问题被转换成线性方案,而第二种办法则用预测的梯度来解决这个问题。为了说明理论结果,我们考虑了两个问题,最佳方案是用数字来设计的。根据蒙特卡洛的模拟,我们确认数字结果与理论一致。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
44+阅读 · 2020年10月31日
专知会员服务
161+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年7月1日
Arxiv
0+阅读 · 2021年7月1日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
Arxiv
8+阅读 · 2018年4月12日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员