Local image feature matching under large appearance, viewpoint, and distance changes is challenging yet important. Conventional methods detect and match tentative local features across the whole images, with heuristic consistency checks to guarantee reliable matches. In this paper, we introduce a novel Overlap Estimation method conditioned on image pairs with TRansformer, named OETR, to constrain local feature matching in the commonly visible region. OETR performs overlap estimation in a two-step process of feature correlation and then overlap regression. As a preprocessing module, OETR can be plugged into any existing local feature detection and matching pipeline, to mitigate potential view angle or scale variance. Intensive experiments show that OETR can boost state-of-the-art local feature matching performance substantially, especially for image pairs with small shared regions. The code will be publicly available at https://github.com/AbyssGaze/OETR.
翻译:在大型外观、视图和距离变化下匹配本地图像功能是具有挑战性的。 常规方法检测并匹配整个图像的暂定本地特征, 并进行超常一致性检查, 以保证可靠的匹配 。 在本文中, 我们引入了一种新型的超常估计方法, 其条件是与名为 OETR 的 TR 的图像配对, 以限制常见可见区域的本地特征匹配 。 OETR 在特征相关性的两步进程中进行重叠估计, 然后是重叠回归 。 作为预处理模块, OETR 可以连接到任何现有的本地特征检测和匹配管道中, 以减小潜在视野角度或比例差异 。 密集实验显示 OETR 可以大大提升最先进的本地特征匹配性能, 特别是小共享区域的图像配对 。 该代码将在 https:// github.com/ AbysGaze/ OETR 上公开发布 。