We consider the minimisation problem of submodular functions and investigate the application of a zeroth-order method to this problem. The method is based on exploiting a Gaussian smoothing random oracle to estimate the smoothed function gradient. We prove the convergence of the algorithm to a global $\epsilon$-approximate solution in the offline case and show that the algorithm is Hannan-consistent in the online case with respect to static regret. Moreover, we show that the algorithm achieves $O(\sqrt{NP_N^\ast})$ dynamic regret, where $N$ is the number of iterations and $P_N^\ast$ is the path length. The complexity analysis and hyperparameter selection are presented for all the cases. The theoretical results are illustrated via numerical examples.
翻译:暂无翻译