In this work we continue studies of the uncertainty quantification problem in emission tomographies such as PET or SPECT. In particular, we consider a scenario when additional multimodal data (e.g., anatomical MRI images) are available. To solve the aforementioned problem we adapt the recently proposed nonparametric posterior learning technique to the context of Poisson-type data in emission tomography. Using this approach we derive sampling algorithms which are trivially parallelizable, scalable and very easy to implement. In addition, we prove conditional consistency and tightness for the distribution of produced samples in the small noise limit (i.e., when the acquisition time tends to infinity) and derive new geometrical and necessary condition on how MRI images must be used. This condition arises naturally in the context of misspecified generalized Poisson models. We also contrast our approach with bayesian MCMC sampling based a data augmentation scheme which is very popular in the context of EM-type algorithms for PET or SPECT. We show theoretically and also numerically that such data augmentation significantly increases mixing times for the Markov chain. In view of this, our algorithms seem to give a reasonable trade-off between design complexity, scalability, numerical load and asessement for the uncertainty quantification.
翻译:在这项工作中,我们继续研究诸如PET或SPECT等排放分子分布图中不确定的量化问题。我们特别考虑在具备额外多式数据(例如解剖式磁共振成像)的情况下会出现一种假设情况。为了解决上述问题,我们将最近提出的非对数后边学习技术适应Poisson型数据在排放透析中的情况。我们采用这种方法,我们得出了可微不足道地平行、可伸缩和易于执行的抽样算法。此外,我们证明在小噪音限制(即获取时间趋向无限)下分发所生产的样品具有有条件的一致性和紧凑性,并提出了必须如何使用磁共振成像的新的几何和必要条件。这一条件自然出现在错误描述的普瓦森型模型中。我们还将我们的方法与以数据增强计划为基础的海湾MCMC取样方法进行了对比,这种方法在PET或SPECT的EM型算法中非常受欢迎。我们还在理论上和数字上表明,这种数据增强大大增加了Markov 链的混合时间,使这一贸易的精确性成为了我们的合理的数值的精确性。