The recovery of signals that are sparse not in a basis, but rather sparse with respect to an over-complete dictionary is one of the most flexible settings in the field of compressed sensing with numerous applications. As in the standard compressed sensing setting, it is possible that the signal can be reconstructed efficiently from few, linear measurements, for example by the so-called $\ell_1$-synthesis method. However, it has been less well-understood which measurement matrices provably work for this setting. Whereas in the standard setting, it has been shown that even certain heavy-tailed measurement matrices can be used in the same sample complexity regime as Gaussian matrices, comparable results are only available for the restrictive class of sub-Gaussian measurement vectors as far as the recovery of dictionary-sparse signals via $\ell_1$-synthesis is concerned. In this work, we fill this gap and establish optimal guarantees for the recovery of vectors that are (approximately) sparse with respect to a dictionary via the $\ell_1$-synthesis method from linear, potentially noisy measurements for a large class of random measurement matrices. In particular, we show that random measurements that fulfill only a small-ball assumption and a weak moment assumption, such as random vectors with i.i.d. Student-$t$ entries with a logarithmic number of degrees of freedom, lead to comparable guarantees as (sub-)Gaussian measurements. As a technical tool, we show a bound on the expectation of the sum of squared order statistics under very general assumptions, which might be of independent interest. As a corollary of our results, we also obtain a slight improvement on the weakest assumption on a measurement matrix with i.i.d. rows sufficient for uniform recovery in standard compressed sensing, improving on results by Lecu\'e and Mendelson and Dirksen, Lecu\'e and Rauhut.


翻译:信号的恢复并非在基础上少见,而是在过于完整的字典方面少见,而是少见的。 在标准设置中,甚至某些重尾测量矩阵都可以在与高斯矩阵相同的常规复杂样本系统中使用。与标准的压缩感测设置一样,该信号有可能从少数线性测量中有效地重建,例如所谓的$\ell_1美元合成法。然而,我们对于这一设置的测量矩阵工作没有那么清楚,而对于这一设置来说,这种测量矩阵是可行的。虽然在标准设置中,甚至某些重尾测量矩阵也可以在与高斯测矩阵相同的样本中使用。正如标准压缩感测设置中那样,对于限制级的亚欧裔测量矢量而言,只有可比的类别,从字典-沙文中恢复信号。我们填补了这一缺口,为矢量的恢复建立了最佳保障,通过美元=1美元-美元独立合成方法,从线性测试方法从直线性, 可能为高斯洛夫的直立度测量结果, 也只能通过高空基质测测测算。 特别,我们只能通过一个随机测算的直位的序列, 显示一个随机测算结果,我们只能显示一个随机测算。

0
下载
关闭预览

相关内容

压缩感知是近年来极为热门的研究前沿,在若干应用领域中都引起瞩目。 compressive sensing(CS) 又称 compressived sensing ,compressived sample,大意是在采集信号的时候(模拟到数字),同时完成对信号压缩之意。 与稀疏表示不同,压缩感知关注的是如何利用信号本身所具有的稀疏性,从部分观测样本中恢复原信号。
专知会员服务
76+阅读 · 2021年3月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
124+阅读 · 2020年11月20日
专知会员服务
52+阅读 · 2020年9月7日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
3+阅读 · 2018年6月20日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年11月19日
VIP会员
相关VIP内容
专知会员服务
76+阅读 · 2021年3月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
124+阅读 · 2020年11月20日
专知会员服务
52+阅读 · 2020年9月7日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
3+阅读 · 2018年6月20日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员