We introduce mlOSP, a computational template for Machine Learning for Optimal Stopping Problems. The template is implemented in the R statistical environment and publicly available via a GitHub repository. mlOSP presents a unified numerical implementation of Regression Monte Carlo (RMC) approaches to optimal stopping, providing a state-of-the-art, open-source, reproducible and transparent platform. Highlighting its modular nature, we present multiple novel variants of RMC algorithms, especially in terms of constructing simulation designs for training the regressors, as well as in terms of machine learning regression modules. Furthermore, mlOSP nests most of the existing RMC schemes, allowing for a consistent and verifiable benchmarking of extant algorithms. The article contains extensive R code snippets and figures, and serves as a vignette to the underlying software package.
翻译:我们引入 mLOSP, 这是最佳停止问题机器学习的计算模板。 模板在 R 统计环境中实施, 并通过 GitHub 仓库公开提供 。 mlOSP 展示了回归蒙特卡洛(RMC) 最佳停止方法的统一数字实施, 提供了一个最先进的、 开放的、 可复制的和透明的平台 。 突出其模块性质, 我们展示了多种新型的 RMC 算法变异, 特别是用于培训递减者的模拟设计, 以及机器学习回归模块 。 此外, mlOSP 嵌套了大多数现有的 RMC 计划, 允许对活性算法进行一致和可核查的基准基准 。 文章包含广泛的 R 代码断块和图, 并用作基本软件包的符号 。