In the medical field, multi-center collaborations are often sought to yield more generalizable findings by leveraging the heterogeneity of patient and clinical data. However, recent privacy regulations hinder the possibility to share data, and consequently, to come up with machine learning-based solutions that support diagnosis and prognosis. Federated learning (FL) aims at sidestepping this limitation by bringing AI-based solutions to data owners and only sharing local AI models, or parts thereof, that need then to be aggregated. However, most of the existing federated learning solutions are still at their infancy and show several shortcomings, from the lack of a reliable and effective aggregation scheme able to retain the knowledge learned locally to weak privacy preservation as real data may be reconstructed from model updates. Furthermore, the majority of these approaches, especially those dealing with medical data, relies on a centralized distributed learning strategy that poses robustness, scalability and trust issues. In this paper we present a federated and decentralized learning strategy, FedER, that, exploiting experience replay and generative adversarial concepts, effectively integrates features from local nodes, providing models able to generalize across multiple datasets while maintaining privacy. FedER is tested on two tasks -- tuberculosis and melanoma classification -- using multiple datasets in order to simulate realistic non-i.i.d. medical data scenarios. Results show that our approach achieves performance comparable to standard (non-federated) learning and significantly outperforms state-of-the-art federated methods in their centralized (thus, more favourable) formulation. Code is available at https://github.com/perceivelab/FedER
翻译:在医疗领域,往往寻求多中心协作,利用病人和临床数据的异质性,从而得出更普遍适用的结论;然而,最近的隐私条例妨碍了分享数据的可能性,因此也妨碍了利用支持诊断和预测的机器学习解决方案。联邦学习(FL)的目的是通过将基于AI的解决方案带给数据所有者,并只分享当地需要汇总的人工智能模型或其中部分内容,从而绕过这一限制。然而,大多数现有的联邦化学习解决方案仍然处于初创阶段,并显示出一些缺点,因为缺乏可靠、有效的汇总机制,无法保留在当地学习的中央知识,从而无法从模型更新中重建薄弱的隐私保护。此外,大多数这些方法,尤其是那些处理医疗数据的方法,都依赖于集中分布的学习战略,这种战略具有稳健性、可缩放性和信任性。在本文中,我们介绍了一种供精密和分散的学习战略,FedER,即利用现有的经验重现和归正性国家对称概念,有效地整合了本地节制模式的特征,提供了能够将本地学知识保留到本地的中央中央级的隐私保护知识,而薄弱的隐私保护,因为实际数据保存的保存,因为可以通过模型更新数据,同时维护隐私数据,在多级数据分类中,同时,在多级数据格式化数据系统化数据中进行模拟的模型化数据排序。