Powerful deep learning algorithms open an opportunity for solving non-image Machine Learning (ML) problems by transforming these problems to into the image recognition problems. The CPC-R algorithm presented in this chapter converts non-image data into images by visualizing non-image data. Then deep learning CNN algorithms solve the learning problems on these images. The design of the CPC-R algorithm allows preserving all high-dimensional information in 2-D images. The use of pair values mapping instead of single value mapping used in the alternative approaches allows encoding each n-D point with 2 times fewer visual elements. The attributes of an n-D point are divided into pairs of its values and each pair is visualized as 2-D points in the same 2-D Cartesian coordinates. Next, grey scale or color intensity values are assigned to each pair to encode the order of pairs. This is resulted in the heatmap image. The computational experiments with CPC-R are conducted for different CNN architectures, and methods to optimize the CPC-R images showing that the combined CPC-R and deep learning CNN algorithms are able to solve non-image ML problems reaching high accuracy on the benchmark datasets. This chapter expands our prior work by adding more experiments to test accuracy of classification, exploring saliency and informativeness of discovered features to test their interpretability, and generalizing the approach.


翻译:强大的深层学习算法通过将这些问题转换成图像识别问题,为解决非图像机器学习(ML)问题打开了一个机会。 本章中提供的 CPC- R 算法将非图像数据转换成图像, 通过对非图像数据进行视觉化。 然后深层学习CNN 算法解决了这些图像的学习问题。 CPC- R 算法的设计可以保存2D图像中的所有高维信息。 使用对等值绘图,而不是替代方法中使用的单一值绘图,可以将每个 n- D 点编码成比视觉元素少2倍。 n- D 点的属性被分为一对数值,每对匹配的算法则被视觉化成2D点。 下一步, 灰度或颜色强度值被指派给每对对来编码这些图像上的学习问题。 与CPC- R 算法的计算实验是为不同的CNN结构进行的, 以及优化CPC- R 图像的方法显示, CPC- R 和深层学习的CNN 算法能够解决其数值组合的对数值的对配对, 的数值分为一对,,, 以2D- D点点点点点点点值转换为可视觉坐标坐标,,,, 视觉坐标坐标坐标坐标坐标坐标坐标坐标坐标坐标坐标坐标的可视,可以视觉可视, 视觉可视觉可被视觉化为2-,可视点点点为2- 。

0
下载
关闭预览

相关内容

两人亲密社交应用,官网: trypair.com/
【SIGIR2020】学习词项区分性,Learning Term Discrimination
专知会员服务
15+阅读 · 2020年4月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
CosFace: Large Margin Cosine Loss for Deep Face Recognition论文笔记
统计学习与视觉计算组
44+阅读 · 2018年4月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
13+阅读 · 2020年8月3日
A survey on deep hashing for image retrieval
Arxiv
14+阅读 · 2020年6月10日
Arxiv
5+阅读 · 2018年10月11日
Arxiv
8+阅读 · 2018年5月15日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
CosFace: Large Margin Cosine Loss for Deep Face Recognition论文笔记
统计学习与视觉计算组
44+阅读 · 2018年4月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员