In this paper, we obtain the necessary and sufficient conditions for quasi-cyclic codes with index even to be symplectic self-orthogonal. Then, we propose a method for constructing symplectic self-orthogonal quasi-cyclic codes, which allows arbitrary polynomials that divide $ x^{n}-1$ to construct symplectic self-orthogonal codes. Especially in the case of $1$-generator quasi-cyclic codes with index two, our construction improves Calderbank's additive construction, Theorem 14 in ``Quantum error correction via codes over $GF(4)$". Finally, we construct many binary symplectic self-orthogonal codes with excellent parameters to illustrate our approach's effectiveness. The corresponding quantum codes improve Grassl's table (bounds on the minimum distance of quantum codes. http://www.codetables.de).


翻译:在本文中,我们为具有指数的准周期代码获得了必要和充分的条件,即使指数是相互跳动的自我垂直的。 然后,我们提出了一种方法,用于构建相互跳动的自我垂直准周期代码。 这种方法允许任意的多民族代码分割 x ⁇ n}-1美元,用于构建相互跳动的自我垂直代码。 特别是,对于具有指数2的1美元生成的准周期代码,我们的建筑改进了卡尔德银行的添加剂结构,“ 单子” 14 的理论,通过超过$GF(4)$的代码来纠正“ 子” 。 最后,我们构建了许多二进式的自我垂直代码,有极好的参数来说明我们的方法的有效性。 相应的量子代码改善了格拉特尔的表格(距离最小量子代码的边距)。 http://www.codebables.de)。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
80+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
专知会员服务
162+阅读 · 2020年1月16日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年2月28日
Arxiv
0+阅读 · 2023年2月27日
Arxiv
0+阅读 · 2023年2月27日
Arxiv
0+阅读 · 2023年2月25日
Arxiv
11+阅读 · 2020年12月2日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
80+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
专知会员服务
162+阅读 · 2020年1月16日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员