Conjucyclic codes are an important and special family of classical error-correcting codes, which have been used to construct binary quantum error-correcting codes (QECCs). However, at present, the research on the conjucyclic codes is extremely insufficient. This paper will explore the algebraic structure of additive conjucyclic codes over $\mathbb{F}_{q^{2}}$ for the first time. Mainly via the trace function from $\mathbb{F}_{q^{2}}$ down $\mathbb{F}_{q}$, we will firstly build an isomorphic mapping between $q^2$-ary additive conjucyclic codes and $q$-ary linear cyclic codes. Since the mapping preserves the weight and orthogonality, then the dual structure of these codes with respect to the alternating inner product will be described. Then a new construction of QECCs from conjucyclic codes can be obtained. Finally, the enumeration of $q^2$-ary additive conjucyclic codes of length $n$ and the explicit forms of their generator and parity-check matrices will be determined.


翻译:共生法典是一个重要和特殊的经典错误校正法典体系,用于构建二进制量子误差校正法典(QECCs),然而,目前对共生法典的研究极为不足,本文件将首次探讨超过$\mathbb{F<unk> q<unk> 2<unk> $的添加共生法典代数代数的代数结构。主要通过由 $\mathbb{F<unk> q<unk> 2<unk> $的追踪功能,我们首先在 $\mathb{F<unk> 2<unk> 2$ 下调 $\mathb{F<unk> q}之间绘制一种异形图,我们将首先在 $2 $2 的添加相生共生法典和$$ $ 和$q$ $ 的直线性线性循环法典之间绘制一种异形图。由于此绘图保存了重量和正数性,然后将描述这些编码与交替核心产品有关的双重结构。然后可以从共生法典中获取新的QECCs结构。最后,我们将在 $ $2$ $ 美元 和等价矩阵代码和明确的形式确定其发电机和等式矩阵矩阵的编码。</s>

0
下载
关闭预览

相关内容

【硬核书】矩阵代数基础,248页pdf
专知会员服务
86+阅读 · 2021年12月9日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年4月14日
Arxiv
0+阅读 · 2023年4月14日
Arxiv
12+阅读 · 2022年11月21日
Arxiv
20+阅读 · 2021年9月22日
Arxiv
19+阅读 · 2018年10月25日
Arxiv
23+阅读 · 2017年3月9日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员