Motivated by the increasing adoption of models which facilitate greater automation in risk management and decision-making, this paper presents a novel Importance Sampling (IS) scheme for measuring distribution tails of objectives modelled with enabling tools such as feature-based decision rules, mixed integer linear programs, deep neural networks, etc. Conventional efficient IS approaches suffer from feasibility and scalability concerns due to the need to intricately tailor the sampler to the underlying probability distribution and the objective. This challenge is overcome in the proposed black-box scheme by automating the selection of an effective IS distribution with a transformation that implicitly learns and replicates the concentration properties observed in less rare samples. This novel approach is guided by a large deviations principle that brings out the phenomenon of self-similarity of optimal IS distributions. The proposed sampler is the first to attain asymptotically optimal variance reduction across a spectrum of multivariate distributions despite being oblivious to the underlying structure. The large deviations principle additionally results in new distribution tail asymptotics capable of yielding operational insights. The applicability is illustrated by considering product distribution networks and portfolio credit risk models informed by neural networks as examples.


翻译:由于越来越多地采用有利于风险管理和决策方面实现更大自动化的模型,本文件提出了一种新的衡量目标分布尾部的重要抽样(IS)计划,其模型采用基于地貌的决策规则、混合整数线性程序、深神经网络等有利工具。 常规高效的IS方法由于需要使取样员仔细地适应基本概率分布和目标,因而存在可行性和可缩放性问题。在拟议的黑箱计划中,通过对有效的IS分布进行自动化选择,进行不言而喻地学习和复制在较少的样本中观察到的集中特性的转化,克服了这一挑战。这一新颖方法以一个大偏差原则为指导,该原则揭示了最佳IS分布的自我相似性现象。提议的取样器是第一个在多变分布的频谱中实现无损最佳差异缩小的目标,尽管对基本结构漠不关心。巨大的偏差原则还导致能够产生操作洞察力的新分销尾部的干扰。通过将产品分配网络和由神经网络所了解的组合信贷风险模型作为实例来说明其适用性。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
专知会员服务
161+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Learning to Importance Sample in Primary Sample Space
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员