Similarity metric is crucial for massive MIMO positioning utilizing channel state information~(CSI). In this letter, we propose a novel massive MIMO CSI similarity learning method via deep convolutional neural network~(DCNN) and contrastive learning. A contrastive loss function is designed considering multiple positive and negative CSI samples drawn from a training dataset. The DCNN encoder is trained using the loss so that positive samples are mapped to points close to the anchor's encoding, while encodings of negative samples are kept away from the anchor's in the representation space. Evaluation results of fingerprint-based positioning on a real-world CSI dataset show that the learned similarity metric improves positioning accuracy significantly compared with other known state-of-the-art methods.
翻译:利用频道状态信息~(CSI)对大型IMO定位使用频道状态信息~(CSI)来说,相似度指标至关重要。在本信中,我们提议通过深层进化神经网络~(DCNN)和对比性学习,采用新的大型MIMO CSI类似学习方法。设计了一个对比性损失功能,考虑从培训数据集中提取多个正负的CSI样本。使用损失对DCNN编码器进行了培训,以便绘制正数样本,以接近锚的编码,而负数样本编码则远离代表空间的锚。在真实世界的 CSI数据集中基于指纹定位的评价结果显示,与其他已知的最新方法相比,所学的类似度指标大大提高了定位准确性。