In this paper we are concerned with a class of optimization problems involving the $p(x)$-Laplacian operator, which arise in imaging and signal analysis. We study the well-posedness of this kind of problems in an amalgam space considering that the variable exponent $p(x)$ is a log-H\"older continuous function. Further, we propose a preconditioned descent algorithm for the numerical solution of the problem, considering a "frozen exponent" approach in a finite dimension space. Finally, we carry on several numerical experiments to show the advantages of our method. Specifically, we study two detailed example whose motivation lies in a possible extension of the proposed technique to image processing.
翻译:在本文中,我们关注在成像和信号分析中出现的涉及$p(x)$-Laplacian操作员的一类优化问题。我们研究了在混合空间中这类问题的有利性,考虑到可变Expent $p(x)$(x)是一个日志-H\"老的连续功能。此外,我们提出一个为解决问题的数字解决方案设定先决条件的下限算法,在有限的空间中考虑“冻结的exponent”方法。最后,我们进行了数个数字实验,以展示我们方法的优点。具体地说,我们研究了两个详细的例子,其动机在于可能将拟议的技术扩大到图像处理。