Deterministic computational modeling of laser powder bed fusion (LPBF) process fails to capture irregularities and roughness of the scan track, unless expensive powder-scale analysis is used. In this work we developed a stochastic computational modeling framework based on Markov Chain Monte Carlo (MCMC) capable of capturing the irregularities of LPBF scan. The model is calibrated against AFRL single track scan data using a specially designed tensor decomposition method, i.e., Higher-Order Proper Generalized Decomposition (HOPGD) that relies on non-intrusive data learning and construction of reduced order surrogate models. Once calibrated, the stochastic model can be used to predict the roughness and porosity at part scale at a significantly reduced computational cost compared to detailed powder-scale deterministic simulations. The stochastic simulation predictions are validated against AFRL multi-layer and multitrack experiments and reported as more accurate when compared with regular deterministic simulation results.


翻译:激光粉床聚变(LPBF)过程的确定性计算模型未能捕捉扫描轨迹的异常和粗糙,除非使用昂贵的粉末比例分析。在这项工作中,我们开发了一个基于Markov链蒙特卡洛(MCMC)的随机计算模型框架,能够捕捉LPB扫描的违规情况。该模型根据AFRL单轨迹扫描数据进行校准,该模型使用了专门设计的高压分解法,即依赖非侵入性数据学习和构建减少定序代谢模型的高端正常一般分解法(HOPGD),该模型一旦校准,就可以使用部分规模的随机模型预测粗度和孔度,其计算成本将大大低于详细的粉末规模确定性模拟。与AFRL多层和多轨实验相比,对随机模拟预测进行了验证,报告比常规确定性模拟结果更为准确。

1
下载
关闭预览

相关内容

美国空军研究实验室(The Air Force Research Laboratory,AFRL)是美国空军的研究实验室,其总部位于俄亥俄州赖特-帕特森空军基地。该实验室成立于1997年10月31日,直属于美国空军装备司令部。AFRL致力于领导空军作战技术的研究与发展、空军科技计划的规划与执行以及为美国空中、外太空和赛博空间的部队提供战斗力。
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月4日
Arxiv
0+阅读 · 2022年10月1日
Arxiv
0+阅读 · 2022年9月30日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员