Recently, it has been shown that neural networks not only approximate the ground-state wave functions of a single molecular system well but can also generalize to multiple geometries. While such generalization significantly speeds up training, each energy evaluation still requires Monte Carlo integration which limits the evaluation to a few geometries. In this work, we address the inference shortcomings by proposing the Potential learning from ab-initio Networks (PlaNet) framework, in which we simultaneously train a surrogate model in addition to the neural wave function. At inference time, the surrogate avoids expensive Monte-Carlo integration by directly estimating the energy, accelerating the process from hours to milliseconds. In this way, we can accurately model high-resolution multi-dimensional energy surfaces for larger systems that previously were unobtainable via neural wave functions. Finally, we explore an additional inductive bias by introducing physically-motivated restricted neural wave function models. We implement such a function with several additional improvements in the new PESNet++ model. In our experimental evaluation, PlaNet accelerates inference by 7 orders of magnitude for larger molecules like ethanol while preserving accuracy. Compared to previous energy surface networks, PESNet++ reduces energy errors by up to 74%.


翻译:最近,人们已经表明,神经网络不仅能够很好地接近单一分子系统的地面波功能,而且可以推广到多种地貌。尽管这种一般化可以大大加快培训,但每个能源评价仍然需要蒙特卡洛整合,从而将评价限制在少数几处地貌。在这项工作中,我们通过提出从 ab-initio 网络(PlaNet) 框架中的潜在学习来解决推论缺陷,我们在这个框架中除了神经波功能之外,还同时训练一个代谢模型。在推断时,代孕避免了昂贵的蒙特-卡洛整合,直接估计能源,将过程从小时加速到毫秒。在这种方式中,我们可以精确地为以前无法通过神经波功能获得的较大系统模拟高分辨率多维能源表面。最后,我们通过引入物理动机限制的神经波功能模型来探索额外的诱导偏差。我们在新的PESNet++模型中实施这样的功能,通过直接的实验评估,PlaNet通过7级速度加速蒙特-Carlolo的整合,将过程从小时加速到毫秒。这样,我们可以准确地为更大的系统模拟系统模拟,同时通过保存以前的能量定位,例如气压,将能量到电压将能量网络降低。

0
下载
关闭预览

相关内容

Surface 是微软公司( Microsoft)旗下一系列使用 Windows 10(早期为 Windows 8.X)操作系统的电脑产品,目前有 Surface、Surface Pro 和 Surface Book 三个系列。 2012 年 6 月 18 日,初代 Surface Pro/RT 由时任微软 CEO 史蒂夫·鲍尔默发布于在洛杉矶举行的记者会,2012 年 10 月 26 日上市销售。
不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
70+阅读 · 2022年7月11日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
24+阅读 · 2018年10月24日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员