Dual continuation, an innovative insight into extending the real-valued functions of real matrices to the dual-valued functions of dual matrices with a foundation of the G\^ateaux derivative, is proposed. Theoretically, the general forms of dual-valued vector and matrix norms, the remaining properties in the real field, are provided. In particular, we focus on the dual-valued vector $p$-norm $(1\!\leq\! p\!\leq\!\infty)$ and the unitarily invariant dual-valued Ky Fan $p$-$k$-norm $(1\!\leq\! p\!\leq\!\infty)$. The equivalence between the dual-valued Ky Fan $p$-$k$-norm and the dual-valued vector $p$-norm of the first $k$ singular values of the dual matrix is then demonstrated. Practically, we define the dual transitional probability matrix (DTPM), as well as its dual-valued effective information (${\rm{EI_d}}$). Additionally, we elucidate the correlation between the ${\rm{EI_d}}$, the dual-valued Schatten $p$-norm, and the dynamical reversibility of a DTPM. Through numerical experiments on a dumbbell Markov chain, our findings indicate that the value of $k$, corresponding to the maximum value of the infinitesimal part of the dual-valued Ky Fan $p$-$k$-norm by adjusting $p$ in the interval $[1,2)$, characterizes the optimal classification number of the system for the occurrence of the causal emergence.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
14+阅读 · 2024年5月28日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员