As deep learning applications continue to become more diverse, an interesting question arises: Can general problem solving arise from jointly learning several such diverse tasks? To approach this question, deep multi-task learning is extended in this paper to the setting where there is no obvious overlap between task architectures. The idea is that any set of (architecture,task) pairs can be decomposed into a set of potentially related subproblems, whose sharing is optimized by an efficient stochastic algorithm. The approach is first validated in a classic synthetic multi-task learning benchmark, and then applied to sharing across disparate architectures for vision, NLP, and genomics tasks. It discovers regularities across these domains, encodes them into sharable modules, and combines these modules systematically to improve performance in the individual tasks. The results confirm that sharing learned functionality across diverse domains and architectures is indeed beneficial, thus establishing a key ingredient for general problem solving in the future.


翻译:随着深层次学习应用的日益多样化,产生了一个有趣的问题:共同学习多种不同任务,能否解决一般性问题?为了解决这一问题,本文件将深度多任务学习扩大到任务结构之间没有明显重叠的地方。想法是,任何一组(建筑、塔萨克)对子(建筑、塔萨克)配对都可以分解成一套可能相关的子问题,通过高效的随机算法优化共享。这种方法首先在经典的合成多任务学习基准中验证,然后用于共享不同结构的视觉、NLP和基因组任务。它发现这些领域的常规性,将其编码为可辨别模块,并系统地将这些模块组合起来,以改进单个任务的业绩。结果证实,共享不同领域和结构的学习功能确实是有益的,从而为今后解决一般性问题奠定了关键要素。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
Continual Unsupervised Representation Learning
Arxiv
7+阅读 · 2019年10月31日
Hierarchical Deep Multiagent Reinforcement Learning
Arxiv
8+阅读 · 2018年9月25日
Multi-task Deep Reinforcement Learning with PopArt
Arxiv
4+阅读 · 2018年9月12日
Arxiv
19+阅读 · 2018年3月28日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
Top
微信扫码咨询专知VIP会员