Text-to-speech synthesis (TTS) is a task to convert texts into speech. Two of the factors that have been driving TTS are the advancements of probabilistic models and latent representation learning. We propose a TTS method based on latent variable conversion using a diffusion probabilistic model and the variational autoencoder (VAE). In our TTS method, we use a waveform model based on VAE, a diffusion model that predicts the distribution of latent variables in the waveform model from texts, and an alignment model that learns alignments between the text and speech latent sequences. Our method integrates diffusion with VAE by modeling both mean and variance parameters with diffusion, where the target distribution is determined by approximation from VAE. This latent variable conversion framework potentially enables us to flexibly incorporate various latent feature extractors. Our experiments show that our method is robust to linguistic labels with poor orthography and alignment errors.


翻译:文本到语音合成( TTS) 是将文本转换为语音的任务 。 驱动 TTS 的两个因素是概率模型和潜在代表学习的进步。 我们建议了一种基于潜在变量转换的 TTS 方法, 使用扩散概率模型和变式自动读数模型( VAE ) 。 在我们的 TTS 方法中, 我们使用基于 VAE 的波形模型, 一种预测波形模型中潜在变量从文本中分布的分布的扩展模型, 以及一个能够学习文本和语言潜伏序列之间对齐的校准模型。 我们的方法是将平均参数和差异参数与扩散的模型结合起来, 目标分布由 VAE 的近似值决定。 这个潜在变量转换框架可能使我们能够灵活地整合各种潜在特征提取器。 我们的实验表明, 我们的方法对语言标签的拼写率差和校正错误都很强。

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年2月16日
Arxiv
44+阅读 · 2022年9月6日
Arxiv
14+阅读 · 2022年8月25日
Arxiv
21+阅读 · 2019年8月21日
VIP会员
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员