Modeling non-Lambertian effects such as facial specularity leads to a more realistic 3D Morphable Face Model. Existing works build parametric models for diffuse and specular albedo using Light Stage data. However, only diffuse and specular albedo cannot determine the full BRDF. In addition, the requirement of Light Stage data is hard to fulfill for the research communities. This paper proposes the first 3D morphable face reflectance model with spatially varying BRDF using only low-cost publicly-available data. We apply linear shiness weighting into parametric modeling to represent spatially varying specular intensity and shiness. Then an inverse rendering algorithm is developed to reconstruct the reflectance parameters from non-Light Stage data, which are used to train an initial morphable reflectance model. To enhance the model's generalization capability and expressive power, we further propose an update-by-reconstruction strategy to finetune it on an in-the-wild dataset. Experimental results show that our method obtains decent rendering results with plausible facial specularities. Our code is released \href{https://yxuhan.github.io/ReflectanceMM/index.html}{\textcolor{magenta}{here}}.
翻译:建立能够模拟非兰伯特反射如面部高光效果的3D可塑面模型可以得到更加逼真的结果。现有的方法使用光线舞台数据构建漫反射参数和高光反射参数的参数化模型。然而,仅使用漫反射参数和高光反射参数无法确定完整的BRDF(双向反射分布函数)。此外,光线舞台数据的要求很难满足研究社区的需求。本文提出了一种基于低成本公开数据的3D可塑面反射模型的方法。我们将线性高光权重引入参数化建模中以表示不同区域的高光强度和高光反射度。然后,我们开发了一种逆渲染算法,从非光线舞台数据中重构反射参数,用于训练一个初始的可塑面反射模型。为了增强模型的泛化能力和表达能力,我们进一步提出了一种通过重建进行更新的策略,在野外数据集上对其进行了微调。实验结果表明,我们的方法能够得到合理的高光效果,具有良好的渲染结果。我们的代码已在\href{https://yxuhan.github.io/ReflectanceMM/index.html}{\textcolor{magenta}{这里}}发布。