Beam alignment is an important task for millimeter-wave (mmWave) communication, because constructing aligned narrow beams both at the transmitter (Tx) and the receiver (Rx) is crucial in terms of compensating the significant path loss in very high-frequency bands. However, beam alignment is also a highly nontrivial task because large antenna arrays typically have a limited number of radio-frequency chains, allowing only low-dimensional measurements of the high-dimensional channel. This paper considers a two-sided beam alignment problem based on an alternating ping-pong pilot scheme between Tx and Rx over multiple rounds without explicit feedback. We propose a deep active sensing framework in which two long short-term memory (LSTM) based neural networks are employed to learn the adaptive sensing strategies (i.e., measurement vectors) and to produce the final aligned beamformers at both sides. In the proposed ping-pong protocol, the Tx and the Rx alternately send pilots so that both sides can leverage local observations to sequentially design their respective sensing and data transmission beamformers. The proposed strategy can be extended to scenarios with a reconfigurable intelligent surface (RIS) for designing, in addition, the reflection coefficients at the RIS for both sensing and communications. Numerical experiments demonstrate significant and interpretable performance improvement. The proposed strategy works well even for the challenging multipath channel environments.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
126+阅读 · 2022年4月21日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年6月23日
VIP会员
相关VIP内容
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
126+阅读 · 2022年4月21日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员