We propose a deep attention-based alignment network, which aims to automatically predict lyrics and melody with given incomplete lyrics as input in a way similar to the music creation of humans. Most importantly, a deep neural lyrics-to-melody net is trained in an encoder-decoder way to predict possible pairs of lyrics-melody when given incomplete lyrics (few keywords). The attention mechanism is exploited to align the predicted lyrics with the melody during the lyrics-to-melody generation. The qualitative and quantitative evaluation metrics reveal that the proposed method is indeed capable of generating proper lyrics and corresponding melody for composing new songs given a piece of incomplete seed lyrics.
翻译:我们建议建立一个基于关注的深度调和网络,目的是以与人类的音乐创作相似的方式,自动预测歌词和曲调,并给出不完整的歌词作为投入。 最重要的是,一个深神经歌词到熔化网以编码器-解码器的方式接受培训,以预测在给词词不完整时可能的歌词组合(few 关键词) 。 利用关注机制将预测的歌词和歌词与歌词到熔化的一代的旋律相匹配。 定性和定量评估指标显示,拟议方法确实能够产生适当的歌词和相应的旋律,以制作出一份不完整的种子歌词。