We revisit the fundamental question of simple-versus-simple hypothesis testing with an eye towards computational complexity, as the statistically optimal likelihood ratio test is often computationally intractable in high-dimensional settings. In the classical spiked Wigner model (with a general i.i.d. spike prior) we show that an existing test based on linear spectral statistics achieves the best possible tradeoff curve between type I and type II error rates among all computationally efficient tests, even though there are exponential-time tests that do better. This result is conditional on an appropriate complexity-theoretic conjecture, namely a natural strengthening of the well-established low-degree conjecture. Our result shows that the spectrum is a sufficient statistic for computationally bounded tests (but not for all tests). To our knowledge, our approach gives the first tool for reasoning about the precise asymptotic testing error achievable with efficient computation. The main ingredients required for our hardness result are a sharp bound on the norm of the low-degree likelihood ratio along with (counterintuitively) a positive result on achievability of testing. This strategy appears to be new even in the setting of unbounded computation, in which case it gives an alternate way to analyze the fundamental statistical limits of testing.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年12月16日
The Missing U for Efficient Diffusion Models
Arxiv
0+阅读 · 2023年12月15日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
11+阅读 · 2019年4月15日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
0+阅读 · 2023年12月16日
The Missing U for Efficient Diffusion Models
Arxiv
0+阅读 · 2023年12月15日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
11+阅读 · 2019年4月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员