With the progress of Mars exploration, numerous Mars image data are collected and need to be analyzed. However, due to the imbalance and distortion of Martian data, the performance of existing computer vision models is unsatisfactory. In this paper, we introduce a semi-supervised framework for machine vision on Mars and try to resolve two specific tasks: classification and segmentation. Contrastive learning is a powerful representation learning technique. However, there is too much information overlap between Martian data samples, leading to a contradiction between contrastive learning and Martian data. Our key idea is to reconcile this contradiction with the help of annotations and further take advantage of unlabeled data to improve performance. For classification, we propose to ignore inner-class pairs on labeled data as well as neglect negative pairs on unlabeled data, forming supervised inter-class contrastive learning and unsupervised similarity learning. For segmentation, we extend supervised inter-class contrastive learning into an element-wise mode and use online pseudo labels for supervision on unlabeled areas. Experimental results show that our learning strategies can improve the classification and segmentation models by a large margin and outperform state-of-the-art approaches.
翻译:随着火星探索的进展,大量火星图像数据得到收集,需要加以分析。然而,由于火星数据不平衡和扭曲,现有计算机视觉模型的性能不能令人满意。在本文中,我们为火星的机器视觉引入了半监督框架,并试图解决两个具体任务:分类和分化。对比学习是一种强大的代表性学习技术。然而,火星数据样本之间的信息重叠过多,导致对比学习与火星数据之间的矛盾。我们的关键想法是调和这一矛盾,同时进一步利用未贴标签的数据来改进性能。关于分类分类,我们建议忽略标签数据上的内层配对以及忽略未贴标签数据上的负面配对,形成受监督的阶层间对比学习和无超常规的类似学习。关于分解,我们将监督的跨层对比学习推广到一个要素性模式,并使用在线假标签来监督无标签地区。实验结果显示,我们的学习战略可以通过大边距和超常规的方法改进分类和分解模型。