Population size estimation based on the capture-recapture experiment is an interesting problem in various fields including epidemiology, criminology, demography, etc. In many real-life scenarios, there exists inherent heterogeneity among the individuals and dependency between capture and recapture attempts. A novel trivariate Bernoulli model is considered to incorporate these features, and the Bayesian estimation of the model parameters is suggested using data augmentation. Simulation results show robustness under model misspecification and the superiority of the performance of the proposed method over existing competitors. The method is applied to analyse real case studies on epidemiological surveillance. The results provide interesting insight on the heterogeneity and dependence involved in the capture-recapture mechanism. The methodology proposed can assist in effective decision-making and policy formulation.


翻译:根据抓捕-抓获实验得出的人口规模估计是各个领域的一个令人感兴趣的问题,包括流行病学、犯罪学、人口学等。在许多现实生活中,个人之间有着固有的异质性,在抓捕和抓捕尝试之间也存在依赖性。认为一种新颖的三变伯努利模型可以纳入这些特征,建议采用数据扩增方法对模型参数进行巴伊西亚估计。模拟结果显示模型的特性不准确,而且拟议方法的性能优于现有竞争者。该方法用于分析流行病学监测的实际案例研究。结果对抓捕-抓捕机制所涉及的异质性和依赖性提供了有趣的洞察力。拟议方法有助于有效的决策和政策制定。

0
下载
关闭预览

相关内容

如何构建你的推荐系统?这份21页ppt教程为你讲解
专知会员服务
64+阅读 · 2021年2月12日
Sklearn 与 TensorFlow 机器学习实用指南,385页pdf
专知会员服务
129+阅读 · 2020年3月15日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
5+阅读 · 2021年4月21日
Efficient and Effective $L_0$ Feature Selection
Arxiv
5+阅读 · 2018年8月7日
VIP会员
相关VIP内容
如何构建你的推荐系统?这份21页ppt教程为你讲解
专知会员服务
64+阅读 · 2021年2月12日
Sklearn 与 TensorFlow 机器学习实用指南,385页pdf
专知会员服务
129+阅读 · 2020年3月15日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员