We analyze statistical discrimination in hiring markets using a multi-armed bandit model. Myopic firms face workers arriving with heterogeneous observable characteristics. The association between the worker's skill and characteristics is unknown ex ante; thus, firms need to learn it. Laissez-faire causes perpetual underestimation: minority workers are rarely hired, and therefore, underestimation towards them tends to persist. Even a slight population-ratio imbalance frequently produces perpetual underestimation. We propose two policy solutions: a novel subsidy rule (the hybrid mechanism) and the Rooney Rule. Our results indicate that temporary affirmative actions effectively mitigate discrimination caused by insufficient data.


翻译:我们使用多武装强盗模式分析雇用市场中的统计歧视。 近亲公司面对的工人具有各种可观察到的特点。 工人的技能和特点之间的联系在事前并不为人所知; 因此,公司需要了解这一点。 Laissez-faire造成长期低估:少数群体工人很少被雇用,因此,低估他们往往持续存在。 即使是轻微的人口-拉皮欧不平衡也经常导致长期低估。 我们提出了两种政策解决方案:一种新的补贴规则(混合机制)和Rooney规则。 我们的结果表明,临时扶持行动有效地减轻了数据不足造成的歧视。

0
下载
关闭预览

相关内容

专知会员服务
52+阅读 · 2021年8月8日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
15+阅读 · 2020年12月17日
Arxiv
11+阅读 · 2020年12月2日
Arxiv
5+阅读 · 2017年7月25日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Arxiv
15+阅读 · 2020年12月17日
Arxiv
11+阅读 · 2020年12月2日
Arxiv
5+阅读 · 2017年7月25日
Top
微信扫码咨询专知VIP会员