UAVs equipped with a single depth camera encounter significant challenges in dynamic obstacle avoidance due to limited field of view and inevitable blind spots. While active vision strategies that steer onboard cameras have been proposed to expand sensing coverage, most existing methods separate motion planning from sensing considerations, resulting in less effective and delayed obstacle response. To address this limitation, we introduce SPOT (Sensing-augmented Planning via Obstacle Threat modeling), a unified planning framework for observation-aware trajectory planning that explicitly incorporates sensing objectives into motion optimization. At the core of our method is a Gaussian Process-based obstacle belief map, which establishes a unified probabilistic representation of both recognized (previously observed) and potential obstacles. This belief is further processed through a collision-aware inference mechanism that transforms spatial uncertainty and trajectory proximity into a time-varying observation urgency map. By integrating urgency values within the current field of view, we define differentiable objectives that enable real-time, observation-aware trajectory planning with computation times under 10 ms. Simulation and real-world experiments in dynamic, cluttered, and occluded environments show that our method detects potential dynamic obstacles 2.8 seconds earlier than baseline approaches, increasing dynamic obstacle visibility by over 500\%, and enabling safe navigation through cluttered, occluded environments.
翻译:暂无翻译