Cross-modality fusing complementary information of multispectral remote sensing image pairs can improve the perception ability of detection algorithms, making them more robust and reliable for a wider range of applications, such as nighttime detection. Compared with prior methods, we think different features should be processed specifically, the modality-specific features should be retained and enhanced, while the modality-shared features should be cherry-picked from the RGB and thermal IR modalities. Following this idea, a novel and lightweight multispectral feature fusion approach with joint common-modality and differential-modality attentions are proposed, named Cross-Modality Attentive Feature Fusion (CMAFF). Given the intermediate feature maps of RGB and IR images, our module parallel infers attention maps from two separate modalities, common- and differential-modality, then the attention maps are multiplied to the input feature map respectively for adaptive feature enhancement or selection. Extensive experiments demonstrate that our proposed approach can achieve the state-of-the-art performance at a low computation cost.


翻译:多光谱遥感成像配对的交叉模式化补充信息可以提高探测算法的感知能力,使其在夜间探测等更广泛的应用中更加强大和可靠。与以前的方法相比,我们认为应具体处理不同特征,应当保留和加强模式特有特征,而模式共享特征应从RGB和热IR模式中摘取樱桃式的。根据这一想法,建议采用新型和轻度多光谱特征融合法,采用共同模式和差异模式联合关注方式,称为跨模式高度特征聚合法(CMAFF)。鉴于RGB和IR图像的中间特征图,我们的模块平行地从两种不同的模式,即共同模式和差异模式中引出关注地图,然后将关注地图乘以投入特征图,分别用于适应性地貌的增强或选择。广泛的实验表明,我们拟议的方法能够以低计算成本实现最先进的性能。

1
下载
关闭预览

相关内容

Attention机制最早是在视觉图像领域提出来的,但是真正火起来应该算是google mind团队的这篇论文《Recurrent Models of Visual Attention》[14],他们在RNN模型上使用了attention机制来进行图像分类。随后,Bahdanau等人在论文《Neural Machine Translation by Jointly Learning to Align and Translate》 [1]中,使用类似attention的机制在机器翻译任务上将翻译和对齐同时进行,他们的工作算是是第一个提出attention机制应用到NLP领域中。接着类似的基于attention机制的RNN模型扩展开始应用到各种NLP任务中。最近,如何在CNN中使用attention机制也成为了大家的研究热点。下图表示了attention研究进展的大概趋势。
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
【泡泡一分钟】学习多视图相似度(ICCV-2017)
泡泡机器人SLAM
10+阅读 · 2018年10月7日
论文笔记之Feature Selective Networks for Object Detection
统计学习与视觉计算组
21+阅读 · 2018年7月26日
二值多视角聚类:Binary Multi-View Clustering
我爱读PAMI
4+阅读 · 2018年6月24日
图像检索研究进展:浅层、深层特征及特征融合
中国计算机学会
122+阅读 · 2018年3月26日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
已删除
将门创投
5+阅读 · 2017年10月20日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Clustered Object Detection in Aerial Images
Arxiv
5+阅读 · 2019年8月27日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
7+阅读 · 2018年12月5日
VIP会员
相关VIP内容
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
【泡泡一分钟】学习多视图相似度(ICCV-2017)
泡泡机器人SLAM
10+阅读 · 2018年10月7日
论文笔记之Feature Selective Networks for Object Detection
统计学习与视觉计算组
21+阅读 · 2018年7月26日
二值多视角聚类:Binary Multi-View Clustering
我爱读PAMI
4+阅读 · 2018年6月24日
图像检索研究进展:浅层、深层特征及特征融合
中国计算机学会
122+阅读 · 2018年3月26日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
已删除
将门创投
5+阅读 · 2017年10月20日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Top
微信扫码咨询专知VIP会员