The logistic regression analysis proposed by Schouten et al. (Stat Med. 1993;12:1733-1745) has been one of the standard methods in current statistical analysis of case-cohort studies, and it enables effective estimation of risk ratios from the selected subsamples with adjusting potential confounding factors. A remarkable advantage of their method is that the computation can be easily implemented using statistical packages for logistic regression analysis (e.g., glm in R). In this article, however, we show that their robust variance estimator does not account for the duplications of case and subcohort samples, and has generally overestimation bias. We also provide an alternative bootstrap-based consistent variance estimator. Through simulation studies, the bootstrap method provided more precise confidence intervals compared with the robust variance method with retaining the adequate coverage probabilities, consistently.
翻译:Schouten等人(Stat med. 1993;12:1733-1745)提议的后勤回归分析(Sat med. 1993;12:1733-1745)是目前对个案分组研究进行统计分析的标准方法之一,它使得能够对选定子抽样的风险比率进行有效估计,并调整潜在的混杂因素,其方法的一个显著优点是,利用后勤回归分析的统计包(例如R中的 glm),可以很容易地进行计算。 然而,在本条中,我们表明,其稳健的差异估算器没有说明案件和亚分组抽样的重复,而且一般有过高的估算偏差。我们还提供了一种基于靴子陷阱的替代一致差异估计器。通过模拟研究,靴套方法提供了更精确的互信间隔,与保持适当覆盖概率的稳健的差异方法相比,始终保持了更精确的间隔。