In this paper we discuss different transmission operators for the non-overlapping Schwarz method which are suited for solving the time-harmonic Helmholtz equation in cavities (i.e. closed domains which do not feature an outgoing wave condition). Such problems are heavily impacted by back-propagating waves which are often neglected when devising optimized transmission operators for the Schwarz method. This work explores new operators taking into account those back-propagating waves and compares them with well-established operators neglecting these contributions. Notably, this paper focuses on the case of rectangular cavities, as the optimal (non-local) transmission operator can be easily determined. Nonetheless, deviations from this ideal geometry are considered as well. In particular, computations of the acoustic noise in a three-dimensional model of the helium vessel of a beamline cryostat with optimized Schwarz schemes are discussed. Those computations show a reduction of 46% in the iteration count, when comparing an operator optimized for cavities with those optimized for unbounded problems.


翻译:在本文中,我们讨论不同的传输算子,适用于非重叠Schwarz方法,用于求解闭合域(即不具有发散波条件)中的时谐Helmholtz方程。这些问题受到反向传播波的严重影响,而在设计Schwarz方法的优化传输算子时常常被忽略。本文探讨了考虑到这些反向传播波的新算子,并与忽略这些贡献的成熟算子进行了比较。值得注意的是,本文重点研究矩形空腔的情况,因为最佳(非局部)传输算子可以很容易地确定。尽管如此,我们也考虑了与理想几何形状的偏差。特别是,我们讨论了使用优化的Schwarz方案计算带束线低温容器的三维模型中的声噪声。这些计算显示,与针对无边界问题优化的算子相比,优化空腔算子的迭代次数减少了46%。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
70+阅读 · 2022年6月28日
【硬核书】矩阵代数基础,248页pdf
专知会员服务
81+阅读 · 2021年12月9日
专知会员服务
37+阅读 · 2021年8月20日
专知会员服务
50+阅读 · 2020年12月14日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
TensorFlow 2.0新特性之Ragged Tensor
深度学习每日摘要
18+阅读 · 2019年4月5日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
15+阅读 · 2022年1月24日
VIP会员
相关VIP内容
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
TensorFlow 2.0新特性之Ragged Tensor
深度学习每日摘要
18+阅读 · 2019年4月5日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员