Natural image matting is a fundamental and challenging computer vision task. It has many applications in image editing and composition. Recently, deep learning-based approaches have achieved great improvements in image matting. However, most of them require a user-supplied trimap as an auxiliary input, which limits the matting applications in the real world. Although some trimap-free approaches have been proposed, the matting quality is still unsatisfactory compared to trimap-based ones. Without the trimap guidance, the matting models suffer from foreground-background ambiguity easily, and also generate blurry details in the transition area. In this work, we propose PP-Matting, a trimap-free architecture that can achieve high-accuracy natural image matting. Our method applies a high-resolution detail branch (HRDB) that extracts fine-grained details of the foreground with keeping feature resolution unchanged. Also, we propose a semantic context branch (SCB) that adopts a semantic segmentation subtask. It prevents the detail prediction from local ambiguity caused by semantic context missing. In addition, we conduct extensive experiments on two well-known benchmarks: Composition-1k and Distinctions-646. The results demonstrate the superiority of PP-Matting over previous methods. Furthermore, we provide a qualitative evaluation of our method on human matting which shows its outstanding performance in the practical application. The code and pre-trained models will be available at PaddleSeg: https://github.com/PaddlePaddle/PaddleSeg.
翻译:自然图像交配是一项根本性的、具有挑战性的计算机视觉任务。 它在图像编辑和成像方面有许多应用。 最近, 深层次的学习方法在图像交配方面有了很大的改进。 但是, 大部分方法需要用户提供的小块图作为辅助输入, 这限制了真实世界的交配应用程序。 虽然已经提出了一些不设细图的方法, 但与基于 trimap 的相比, 交配质量仍然不尽如人意。 没有三角形指南, 交配模型很容易地受到地平面的模糊性, 并在过渡区域产生模糊的细节。 在此工作中, 我们提议建立PP- Matt, 一个可以实现高精度自然图像交配的无纹结构。 我们的方法使用一个高分辨率的详细分支( HRDB), 以保持地平面分辨率分辨率分辨率分辨率决议。 此外, 我们提议了一个语系背景化环境处处处( SCB), 并使用一个精细的缩略的缩略图 。