项目名称: IDW矿产资源/储量估算方法精细幂指数的智能优化

项目编号: No.41202231

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 天文学、地球科学

项目作者: 李章林

作者单位: 中国地质大学(武汉)

项目金额: 24万元

中文摘要: 针对距离幂次反比(IDW)矿产资源/储量(MROR)估算方法的幂指数难以有效设置及由此造成的估值精度通常不高等问题,从两个层次提出基本解决方案:单次估值过程中,(1)所有参估样品使用相同幂指数(IDW-OPPN)的方法;(2)所有参估样品使用不同幂指数(IDW-MPPN)的方法。为了使这两种方法高质效、高智能,将采用遗传算法和交叉验证等技术进行实现。在自适应地动态计算出每个待估点最优幂指数的同时,所提方法还将能够较好地处理MROR估算过程中经常遇到的样品数据呈非均匀分布或属性值呈非均匀变化情况下的估值问题。将利用多个理论模型数据和实际矿山数据同时从整体精度和局部精度两方面对估算结果的质量进行验证对比。按预期,新方法将不再需要手工设置幂指数,并且能够较大程度提高传统IDW法的估值精度,在局部空间变异性的刻画方面甚至可能超越地质统计学方法。对丰富和完善IDW法MROR估算理论与方法有较大意义。

中文关键词: 资源/储量估算;距离幂次反比;幂指数;空间插值;不确定性建模

英文摘要: Although inverse distance weighting (IDW) is a kind of widely-used mineral resources and ore reserves (MROR) estimation method, the subjectivity and arbitrary in the determination of the power value and the associated weakness in IDW estimation has been uniquely concerned and studied in this project. The drafted solutions were considered from the following two aspects: for estimation to a certain unknown point by IDW method, (1) all the participated samples share a same power exponent, named IDW-OPPN (IDW with One Power to Samples in a Neighborhood) method; (2) all the participated samples have different power exponents compared with others, named IDW-MPPN (IDW with Many Powers to Samples in a Neighborhood) method. With respect to the efficiency, quality and intelligence, several utility techniques, such as genetic algorithm, cross validation and so on, will be employed in implement of the two methods. Thus, in theory the proposed method could not only intelligently select the optimal power values for IDW estimation, but also manage usual problems in IDW estimation using samples with non-uniform distribution in spatial variability or positions, which are very common situations in MROR estimation. As to the planned experiment process, a serial of theoretical model data and practical mineral data will be used for

英文关键词: mineral resource estimation;IDW(inverse distance weighting);power exponent;spatial interpolation;uncertainty assessment

成为VIP会员查看完整内容
0

相关内容

【博士论文】开放环境下的度量学习研究
专知会员服务
46+阅读 · 2021年12月4日
【博士论文】机器学习中的标记增强理论 与应用研究
专知会员服务
29+阅读 · 2021年12月3日
专知会员服务
37+阅读 · 2021年8月31日
专知会员服务
17+阅读 · 2021年5月23日
专知会员服务
73+阅读 · 2020年12月7日
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
90+阅读 · 2020年7月4日
【经典书】凸优化:算法与复杂度,130页pdf
TensorFlow 决策森林来啦!
TensorFlow
0+阅读 · 2021年6月1日
机器学习中如何处理不平衡数据?
机器之心
13+阅读 · 2019年2月17日
R语言时间序列分析
R语言中文社区
12+阅读 · 2018年11月19日
目标跟踪算法分类
算法与数据结构
20+阅读 · 2018年9月28日
BAT机器学习面试题1000题(331~335题)
七月在线实验室
12+阅读 · 2018年8月13日
Xgboost算法——Kaggle案例
R语言中文社区
13+阅读 · 2018年3月13日
干货|EM算法原理总结
全球人工智能
17+阅读 · 2018年1月10日
机器学习之确定最佳聚类数目的10种方法
炼数成金订阅号
13+阅读 · 2017年10月12日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
小贴士
相关VIP内容
相关资讯
【经典书】凸优化:算法与复杂度,130页pdf
TensorFlow 决策森林来啦!
TensorFlow
0+阅读 · 2021年6月1日
机器学习中如何处理不平衡数据?
机器之心
13+阅读 · 2019年2月17日
R语言时间序列分析
R语言中文社区
12+阅读 · 2018年11月19日
目标跟踪算法分类
算法与数据结构
20+阅读 · 2018年9月28日
BAT机器学习面试题1000题(331~335题)
七月在线实验室
12+阅读 · 2018年8月13日
Xgboost算法——Kaggle案例
R语言中文社区
13+阅读 · 2018年3月13日
干货|EM算法原理总结
全球人工智能
17+阅读 · 2018年1月10日
机器学习之确定最佳聚类数目的10种方法
炼数成金订阅号
13+阅读 · 2017年10月12日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员