Machine learning methods on graphs have proven useful in many applications due to their ability to handle generally structured data. The framework of Gaussian Markov Random Fields (GMRFs) provides a principled way to define Gaussian models on graphs by utilizing their sparsity structure. We propose a flexible GMRF model for general graphs built on the multi-layer structure of Deep GMRFs, originally proposed for lattice graphs only. By designing a new type of layer we enable the model to scale to large graphs. The layer is constructed to allow for efficient training using variational inference and existing software frameworks for Graph Neural Networks. For a Gaussian likelihood, close to exact Bayesian inference is available for the latent field. This allows for making predictions with accompanying uncertainty estimates. The usefulness of the proposed model is verified by experiments on a number of synthetic and real world datasets, where it compares favorably to other both Bayesian and deep learning methods.
翻译:图表上的机器学习方法由于能够处理一般结构化数据而在许多应用中证明是有用的。 Gaussian Markov Random Fields (GMRFs) 框架提供了一种原则性的方法,通过利用图形的宽度结构来定义图形上的高斯模型。我们提出了一个灵活的GMRF模型,用于在深色GMRFs多层结构上建立的一般图形,最初只用于拉蒂图。通过设计新类型的层,我们使模型能够缩到大图层。该层的构建是为了利用图态神经网络的变异推理和现有软件框架进行有效的培训。对于可能的情况来说,可以利用接近于Bayesian推理的精确推理法来为潜在字段提供。这样可以进行与不确定性估算相配套的预测。拟议模型的有用性通过若干合成和真实世界数据集的实验得到验证,在那里它与其他巴耶斯和深深层学习方法相比是有利的。