We first consider two decidable fragments of quantified modal logic $\mathsf{S5}$: the one-variable fragment $\mathsf{Q}^1\mathsf{S5}$ and its extension $\mathsf{S5}_{\mathcal{ALC}^u}$ that combines $\mathsf{S5}$ and the description logic $\mathcal{ALC}$ with the universal role. As neither of them enjoys Craig interpolation or projective Beth definability, the existence of interpolants and explicit definitions of predicates -- which is crucial in many knowledge engineering tasks -- does not directly reduce to entailment. Our concern therefore is the computational complexity of deciding whether (uniform) interpolants and definitions exist for given input formulas, signatures and ontologies. We prove that interpolant and definition existence in $\mathsf{Q}^1\mathsf{S5}$ and $\mathsf{S5}_{\mathcal{ALC}^u}$ is decidable in coN2ExpTime, being 2ExpTime-hard, while uniform interpolant existence is undecidable. Then we show that interpolant and definition existence in the one-variable fragment $\mathsf{Q}^1\mathsf{K}$ of quantified modal logic $\mathsf{K}$ is nonelementary decidable, while uniform interpolant existence is undecidable.
翻译:我们首先考虑量化模式逻辑 $\ mathsfsf{S5} $\ mathsf{S5} 的两分数: 单变量碎片 $\mathsf\\\\\1\\mathsf{mathsf{S5} 美元及其扩展 $\mathsf{S5} 美元和描述逻辑 $\mathcal{ALC} 美元与通用角色相结合的两分数块 。 由于它们都不享受 Craig 内推值或投影性Beth 可定义, 内部插数和上游定义的存在 -- -- 在许多知识统一工程任务中都至关重要 -- 并不直接减少包含在内。 因此, 我们关心的是决定给定的输入公式、 签名和 主题是否存在( maths f{S5} ALC_% 美元 。 我们证明, 内插值和定义存在 $mathfralf{S5} 美元 和 $\mathfffr=S5\maclable-macal cal- cal- cal- cal- ru} exmal exlable exmlal exmission</s>