The graph model checking problem consists in testing whether an input graph satisfies a given logical formula. In this paper, we study this problem in a distributed setting, namely local certification. The goal is to assign labels to the nodes of a network to certify that some given property is satisfied, in such a way that the labels can be checked locally. We first investigate which properties can be locally certified with small certificates. Not surprisingly, this is almost never the case, except for not very expressive logic fragments. Following the steps of Courcelle-Grohe, we then look for meta-theorems explaining what happens when we parameterize the problem by some standard measures of how simple the graph classes are. In that direction, our main result states that any MSO formula can be locally certified on graphs with bounded treedepth with a logarithmic number of bits per node, which is the golden standard in certification.
翻译:图形模型检查问题在于测试输入图是否符合给定的逻辑公式。 在本文中, 我们在一个分布式设置中研究这个问题, 即本地认证。 目标是为网络的节点指定标签, 以证明某些特定属性已经满足, 这样标签就可以在本地检查 。 我们首先调查哪些属性可以用小证书在当地认证 。 毫不奇怪, 除了不非常清晰的逻辑碎片, 这几乎从来没有发生过 。 按照Courcelle- Grohe 的步骤, 我们然后寻找元理论来解释当我们通过一些标准测量图形分类的简单度来标定问题时会发生什么结果 。 在这个方向, 我们的主要结果显示, 任何 MSO 公式都可以在有条形深度的图形上用每个节点的对数进行本地认证, 这是认证的黄金标准 。