虽然许多现有的图神经网络(gnn)已被证明可以执行基于ℓ2的图平滑,从而增强全局平滑,但在本工作中,我们旨在通过基于ℓ1的图平滑进一步增强GNN的局部平滑自适应。在此基础上,提出了一种基于ℓ1和ℓ2图平滑的弹性GNN。特别地,我们提出了一种新的、通用的消息传递方案。该消息传递算法不仅有利于反向传播训练,而且在保证理论收敛的前提下达到了预期的平滑特性。在半监督学习任务上的实验表明,所提出的弹性GNN在基准数据集上具有较好的自适应能力,对图对抗攻击具有显著的鲁棒性。
https://www.zhuanzhi.ai/paper/09bea7a76036948cbbba30e86af56ef8