We consider a wireless federated learning system where multiple data holder edge devices collaborate to train a global model via sharing their parameter updates with an honest-but-curious parameter server. We demonstrate that the inherent hardware-induced distortion perturbing the model updates of the edge devices can be exploited as a privacy-preserving mechanism. In particular, we model the distortion as power-dependent additive Gaussian noise and present a power allocation strategy that provides privacy guarantees within the framework of differential privacy. We conduct numerical experiments to evaluate the performance of the proposed power allocation scheme under different levels of hardware impairments.
翻译:我们认为,这是一个无线联合学习系统,在这个系统中,多个数据持有人边缘设备通过与一个诚实但有说服力的参数服务器共享其参数更新,合作培训一个全球模型。我们证明,对边缘设备模型更新造成干扰的固有的硬件诱发扭曲可以作为一种隐私保护机制加以利用。特别是,我们把扭曲模拟作为依赖权力的添加剂高斯噪音,并提出一项在差异隐私权框架内提供隐私保障的权力分配战略。我们进行数字实验,评估在不同级别的硬件缺陷下拟议电力分配计划的执行情况。