Robotics and computer vision problems commonly require handling rigid-body motions comprising translation and rotation - together referred to as pose. In some situations, a vectorial parameterization of pose can be useful, where elements of a vector space are surjectively mapped to a matrix Lie group. For example, these vectorial representations can be employed for optimization as well as uncertainty representation on groups. The most common mapping is the matrix exponential, which maps elements of a Lie algebra onto the associated Lie group. However, this choice is not unique. It has been previously shown how to characterize all such vectorial parameterizations for SO(3), the group of rotations. Some results are also known for the group of poses, where it is possible to build a family of vectorial mappings that includes the matrix exponential as well as the Cayley transformation. We extend what is known for these pose mappings to the 4 x 4 representation common in robotics, and also demonstrate three different examples of the proposed pose mappings: (i) pose interpolation, (ii) pose servoing control, and (iii) pose estimation in a pointcloud alignment problem. In the pointcloud alignment problem our results lead to a new algorithm based on the Cayley transformation, which we call CayPer.


翻译:机器人和计算机视觉问题通常需要处理由翻译和旋转组成的僵硬体动作,这些动作被统称为“构成”。在某些情况下,表面的矢量参数化可能是有用的,因为向量空间的元素被向导映射到一个矩阵 Lie 组。例如,这些矢量表示表可用于优化和群体代表的不确定性。最常见的映射是矩阵指数性,该指数将利代数的元素映射到相联的利伊组上。然而,这一选择并非独一无二。这一选择以前已经展示了如何为SO(3),即轮用组确定所有这种向量参数化的特性。一些结果对于向量组来说也是已知的,在那里有可能建立一个矢量绘图系列,包括矩阵指数和Cayley变形。我们将这些已知的向量映射扩大到机器人中的4 x 4 常见代表,并且还展示了三个不同的拟议成形制图例子:(一) 构成内推、 (二) 构成振动控制,以及(三) 在一个点对焦焦校准问题进行估计。在点上,Clouder 变换时,我们以新的校正算结果为基础。

0
下载
关闭预览

相关内容

Group一直是研究计算机支持的合作工作、人机交互、计算机支持的协作学习和社会技术研究的主要场所。该会议将社会科学、计算机科学、工程、设计、价值观以及其他与小组工作相关的多个不同主题的工作结合起来,并进行了广泛的概念化。官网链接:https://group.acm.org/conferences/group20/
【硬核书】矩阵代数基础,248页pdf
专知会员服务
86+阅读 · 2021年12月9日
专知会员服务
22+阅读 · 2021年6月28日
专知会员服务
51+阅读 · 2020年12月14日
已删除
将门创投
4+阅读 · 2019年11月8日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年2月9日
Arxiv
0+阅读 · 2022年2月4日
Arxiv
0+阅读 · 2022年2月4日
VIP会员
相关VIP内容
【硬核书】矩阵代数基础,248页pdf
专知会员服务
86+阅读 · 2021年12月9日
专知会员服务
22+阅读 · 2021年6月28日
专知会员服务
51+阅读 · 2020年12月14日
相关资讯
已删除
将门创投
4+阅读 · 2019年11月8日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员