Arbitrary image style transfer is a challenging task which aims to stylize a content image conditioned on arbitrary style images. In this task the feature-level content-style transformation plays a vital role for proper fusion of features. Existing feature transformation algorithms often suffer from loss of content or style details, non-natural stroke patterns, and unstable training. To mitigate these issues, this paper proposes a new feature-level style transformation technique, named Style Projection, for parameter-free, fast, and effective content-style transformation. This paper further presents a real-time feed-forward model to leverage Style Projection for arbitrary image style transfer, which includes a regularization term for matching the semantics between input contents and stylized outputs. Extensive qualitative analysis, quantitative evaluation, and user study have demonstrated the effectiveness and efficiency of the proposed methods.
翻译:任意图像风格的转换是一项具有挑战性的任务,其目的是将以任意风格图像为条件的内容图像拼凑成一个结构。在这一任务中,特质级内容风格的转换对于适当整合特征至关重要。现有的特质转换算法往往因内容或风格细节的丢失、非自然中风模式和不稳定的培训而受到影响。为缓解这些问题,本文件提出了一个新的特质级别风格转换技术,名为Style Projection,用于无参数、快速和有效的内容风格转换。本文件还进一步介绍了一个实时反馈前向模型,以利用Style Projection 来利用任意图像风格风格的转换,其中包括将输入内容和质化产出的语义匹配的正规化术语。广泛的定性分析、定量评估和用户研究展示了拟议方法的实效和效率。