This paper addresses two questions: (a) can we identify a sensible class of 2-parameter persistence modules on which the rank invariant is complete? (b) can we determine efficiently whether a given 2-parameter persistence module belongs to this class? We provide positive answers to both questions, and our class of interest is that of rectangle-decomposable modules. Our contributions include: on the one hand, a proof that the rank invariant is complete on rectangle-decomposable modules, together with an inclusion-exclusion formula for counting the multiplicities of the summands; on the other hand, algorithms to check whether a module induced in homology by a bifiltration is rectangle-decomposable, and to decompose it in the affirmative, with a better complexity than state-of-the-art decomposition methods for general 2-parameter persistence modules. Our algorithms are backed up by a new structure theorem, whereby a 2-parameter persistence module is rectangle-decomposable if, and only if, its restrictions to squares are. This local characterization is key to the efficiency of our algorithms, and it generalizes previous conditions derived for the smaller class of block-decomposable modules. It also admits an algebraic formulation that turns out to be a weaker version of the one for block-decomposability. By contrast, we show that general interval-decomposability does not admit such a local characterization, even when locality is understood in a broad sense. Our analysis focuses on the case of modules indexed over finite grids, the more general cases are left as future work.
翻译:本文涉及两个问题 :(a) 我们能否确定一个合理等级的 2 参数 持久性模块的 2 参数 模块, 排名变量是完整的? (b) 我们能否有效地确定 给定 2 参数 持久性模块是否属于该类? 我们为这两个问题提供肯定的答案, 我们感兴趣的类别是 矩形脱解可折的模块 。 我们的贡献包括 : 一方面, 证明 矩形分解模块的等级是完整的, 加上一个包含 - Exclation 模块, 以计算相和相容的多度? (b) ; (b) 我们能否有效地进行算算法, 以检查一个通过 双曲线解析法 的模块是否属于同义 共和性 。 本地的解析法比普通的模块要复杂得多。 本地解析法比普通的版本要小得多。 本地解析法比常规的解算法要小一些。 本地解算法比普通的解算法要小一些。 本地解算法要比普通的解算法要小一些。