Accurate prediction is important for operating an autonomous vehicle in interactive scenarios. Prediction must be fast, to support multiple requests from a planner exploring a range of possible futures. The generated predictions must accurately represent the probabilities of predicted trajectories, while also capturing different modes of behaviour (such as turning left vs continuing straight at a junction). To this end, we present DiPA, an interactive predictor that addresses these challenging requirements. Previous interactive prediction methods use an encoding of k-mode-samples, which under-represents the full distribution. Other methods optimise closest-mode evaluations, which test whether one of the predictions is similar to the ground-truth, but allow additional unlikely predictions to occur, over-representing unlikely predictions. DiPA addresses these limitations by using a Gaussian-Mixture-Model to encode the full distribution, and optimising predictions using both probabilistic and closest-mode measures. These objectives respectively optimise probabilistic accuracy and the ability to capture distinct behaviours, and there is a challenging trade-off between them. We are able to solve both together using a novel training regime. DiPA achieves new state-of-the-art performance on the INTERACTION and NGSIM datasets, and improves over the baseline (MFP) when both closest-mode and probabilistic evaluations are used. This demonstrates effective prediction for supporting a planner on interactive scenarios.


翻译:准确的预测对于在互动情景中运行自主工具非常重要。 预测必须是快速的, 以支持规划者探索一系列可能的未来的多重请求。 生成的预测必须准确代表预测轨迹的概率, 同时捕捉不同的行为模式( 如左转和直线在交界处) 。 为此, 我们向DIPA( 互动预测者) 介绍一个应对这些挑战性要求的互动式预测者。 先前的互动预测方法使用一种编码 k- 模式样本, 后者是完整分布的。 其他方法则优化最接近模式的评价, 以测试其中的一种预测是否与地面规律相似, 但允许更多不太可能的预测发生, 过度代表不可能的预测。 DIPA 解决这些局限性, 使用高山- 混合- 模型来编码全部分布, 并使用最可靠和最接近的度措施来选择预测。 这些目标分别优化预测性准确性准确性和捕捉不同行为的能力, 并且用来支持最有挑战性的贸易- IM( ) 使用最精确的模型, 我们能够共同解决当前和最接近的周期性评估。</s>

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年4月27日
Arxiv
27+阅读 · 2023年1月5日
Arxiv
24+阅读 · 2021年6月25日
Arxiv
12+阅读 · 2021年6月21日
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员